
1 
 

Robo Goat 2011

 
United States Naval Academy, Systems Engineering Department 

 

By Midshipman: 

Adam Albrecht (Jr) 

Caleb Burrow (Sr) 

Amy Lowe (Sr) 

Nicholas Mehalic (Sr) 

Dylan Parrott (Sr) 

 

Adviser Statement:  I certify that the design and engineering of the vehicle by the current student 
team has been significant and was awarded credit for a capstone senior design course.  

 

Adviser:  Assoc. Prof. Joel M. Esposito   ______________________________ 

 

New For 2011 Entry: 
GPS software    Solar panel and charging system  Laptop 
Auto –Iris Camera   Ultrasonic range finders   Visualization Tools  
Camera hood/mount   Camera filter     Safety light  
Integrated RC Control  E-stop       
Line thresholding algorithm Autonomous Navigation Algorithm 

  



2 
 

Overview 
The Robot-Goat is designed around four principles: 

1. Maximize off the shelf hardware use. 

2. All processing done by one laptop running Matlab 

3. A system whose state and world view are easily visualized and controlled by the developers, can be 

debugged more efficiently. 

4. Mapping is not necessary to complete the competition tasks and introduces unnecessary complexity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Innovation:  We believe these are the most innovative features of the Robo-Goat. 

• Solar Power:  it uses solar power to run the onboard electronics (with the exception of the laptop). 

• Robust Vision System: in our experience, this is the most challenging component of the competition.   Our 

robot uses a combination of alternate color spaces, auto-iris hardware, and robust statistics to combat the 

challenges arising from variable lighting conditions. 

• User Interfaces:  We subscribe to the adage:   if you can’t see what the system is thinking, you will not be 

able to debug or improve it.   To that end we have implemented a variety of user interfaces:  a robot 

Power  

Scooter 

 

RoboTeq 

Amplifier 

 

PIC 

 

RC Controller 

 

Laptop 

Running 

Matlab 

 

Laser Range 

Finder 

(5V) 

 

GPS 

(5V) 

 
Compass and 

Ultrasonic 

Range Sensor 

 (7V) 

 

Auto Iris 

Camera  

(12V) 

 

Solar Panels 

 

Smart 

Charger 

 
12 V Battery 

 

24 V Battery 

 

E-STOP 

 



3 
 

centered world view, a remote control model that can be switched to on the fly, and a camera threshold 

selection tool. 

• Maximize Off the Shelf Components:  When possible we try to focus on the planning and perception 

algorithms rather than building custom hardware. 

• Runs Entirely in Matlab:   We exploit Matlab’s extensive library of image processing routines, statistics 

toolbox, GUI and visualization tools.     Programming in Matlab enables rapid prototyping of code, and 

makes visualization easy.    Despite Matlab’s reputation for being slow, with proper coding technique and a 

new laptop we are updating at 10 Hz.    We believe we are the only entry running entirely in Matlab.  

 

New Design Decision Process 
Background: The Robo-Goat capstone project is a legacy project that began in 2009. Every year the vehicle has 

competed in the IGVC (Intelligent Ground Vehicle Competition). In 2009 the Goat placed 20th, and in 2010 it placed 

10th. This year, we hope to be within the top five.  Last year, the majority of issues with the Goat came from the path 

detection capabilities of the camera. Also, the onboard laptop was outdated, the object detection system needed 

improvement, and the Goat suffered from poor battery life. 

After identifying these weaknesses, our team developed the following morphological chart to help identify the 

solutions.    

 

The hi-lighted sections of this chart represent the major additions made to our vehicle this year: 

• Siemens Solar Industries SM20 Panel (2)  

• Auto-Iris Camera 

• SRF08 Ultra Sonic Sensors (4) 

• HP Tablet Laptop 

Characteristics Option 1 Option 2 Option 3 Option 4 

Vision Hardware Auto-Iris Camera 

System 

USB Camera Stereo Camera 

System 

- 

Vision Software Colorspace Contextual Cues Thresholds - 

Obstacle 

Avoidance 

Ultra-Sonic Sensors Laser Range 

Finders 

Camera System - 

Power Battery Solar Wind Bio-Fuel 

Reach Waypoints GPS Differential GPS 2-Axis 

Magnetometer 

3-Axis 

Magnetometer 



4 
 

Figure 1 

Figure 2 

Figure 4 Figure 3 

Power System 
Solar Power System: The battery (Fig 1) that runs the electronics on the Robo-Goat 

is a Power Sonic 12V 7.0Ah sealed lead acid battery (model number PS-1270).  The 

electronics run by the 12V battery are: GPS, Laser, Nav-Board, Ultrasonic range 

sensors, and RC boards.   The total draw on the battery when idling is .64A. There are 

two Siemens Solar Industries SM20 solar panels (Fig 4).  They are individually rated 

at 20W and designed to support a load of up to 1.38A at 14.5V.  These panels were 

wired in parallel to double the charging current supplied to the 12V battery.   

 

The solar charge controller (Fig 2) is a Morningstar Corp. SunSaver-10.  The 

important feature of the controller is the circuitry that keeps the panels from 

draining the battery in poor lighting conditions.  The controller is rated to handle 

10A of input from the solar panels and a 10A load.  The controller is designed to 

run a 12V battery and load and a comparable voltage solar panel.  We chose a 

controller without a LVD (Low Voltage Disconnect) feature.  Since all the 

electronics attached to the battery require between 5V and 6V, there was no danger of equipment damage if the 

battery voltage dropped below the 11.5V factory set disconnect voltage.  In fact, we hypothesized that this feature 

would prematurely force us to replace the 12V battery, thereby defeating the purpose of the solar recharging system.  

The capabilities of this controller significantly exceed the requirements of our current system.     

Mount: The required functions for our mount were for it to have an adjustable angle, and that it would be mounted 

above the laptop to help reduce glare on the screen. Several different designs were explored, but we settled on the 

pin/disc design shown below (Fig 3,4) : 

 

Testing Solar System: Using a 

12V motor that draws .4A we 

tested the solar system to see how 

well it worked.  A baseline test 

with the motor attached to a fully 

charged battery caused the battery 

voltage to drop below 11V in 

approximately 45 minutes.  Note 

that this would imply that the 12V battery has a rating of .3Ah, when it is rated for 7Ah.  The batteries are 5 or 6 

years old and have been used year after year in capstone projects.  When the solar panels were attached and tested 

on a partly cloudy day, the battery voltage had yet to drop below 11V after 2 hrs.  Our true test occurred during the 

DC demonstration of our project in April.  On both days we started with a fully charged battery and did not need to 

change batteries at any time during the day.  In fact, the second day was sunny and the 12V battery was still fully 

charged at the end of the day.    



5 
 

Figure 5 

Figure 6 

Lane Following System 
Auto Iris: We've chosen to use an auto-iris camera, purchased from The Imaging Source.  It uses a motorized iris to 

control the amount of light entering the camera. This ability should not be confused with changing the exposure, 

which alters the frame rate. The reason that we have chosen an auto-iris camera is to compensate for dynamic 

changes in outdoor lighting. In previous years, when an auto-iris camera was not used, small changes in daylight 

would negatively affect the program's ability to track selected colors.  

 

Hood, mount and filter, field of view: The camera is mounted underneath a hood to reduce glare from the sun 

overhead and uses a circular polarizing filter.  It is mounted at about 70 inches above the ground, so that it has the 

largest view of the ground as possible. It is angled downwards, such that the bottom of the viewing window sees 6-

inches from the front of the robot. This to reduce the size of a blind spot directly in front of the robot. At this angle, 

the camera sees 12-inches wider than the robot on each side. 

 

Why YCbCr: The color space that has been chosen for this project is YCbCr. The Y stands for brightness, while Cb 

and Cr refer to color values (Fig 5). If the user only looked at the Y values of an image, they would see a grayscale 

image with the black areas having a Y-value of 0 and the whitest areas having a Y-value of 1. This color space is 

handy for the RoboGoat because it distinguishes color from brightness. This means that the thresholds selected with 

Cb-Cr are more stable in differing lighting conditions, because Cb-Cr values refer to "pure" colors and are not 

affected by shades or shadows. Look back at the thresholded red buoy (Fig 1), notice how all of the red paint has 

been selected despite shadowing. 

 

 

Cb-Cr colorplane, Y set to 0.5 

 

Why don't we use RGB (Red/Green/Blue) for thresholding? RGB thresholds are 

extremely sensitive to lighting changes. The results are inconsistent, and RGB thresholds 

that are captured while looking into the glare of the sun tend to be quite different than the thresholds captured while 

looking away from the sun. 

 

Threshold section: The vision system for the robot is centered on thresholds. This means that the user decides 

which colors the robot should be interested in - how the robot uses those colors is another topic. Every pixel in every 

frame of a video feed has values (brightness, color, etc) that the program can detect, and the robot checks each pixel 

in real-time to determine if it fits the threshold criteria. For example, in a picture of a red buoy (Fig 6), the user 

might threshold the buoy by targeting its red colors. After that threshold is saved by the program, the program will 

"recognize" any object that matches the colors of that red buoy. In our case, we threshold for white lines on a field. 



6 
 

Once thresholded, the robot should recognize those lines every time they appear in the view of the camera. 

 

 

Original Image (left); 

Binary image of threshold  

(right) 

 

 

The 6-Plot Figure is shown below (Fig 7), and is the most powerful source of image information in the program . 

The top three plots, moving left-to-right, display: the original image (top-left), the image shown in YCbCr with a 

uniform/normalized brightness level (top-middle), and a rotatable 3D scatter plot of the image's pixels within the 

YCbCr color space (top-right). The colors of the dots in this 3D scatter plot match the colors in the YCbCr image, so 

the user can see what part of the image they refer to. The bottom three plots, moving left-to-right, display the three 

2D perspectives of the 3D scatter plot: Cb-Cr (bottom-left), Y-Cb (bottom-middle), and Y-Cr (bottom-right). 

Figure 7 

 
The three 2D graphs are very handy. In the example of using the picture of the red buoy, all three 2D plots show the 

dots for the red buoy from various angles of the 3D graph. The dots in first 2D graph (Cb-Cr), however, include 

every value of Y (brightness). This means that if the red dots are selected from the Cb-Cr graph, every shade of the 

red buoy will be included. The other 2D graphs have Y in the vertical axis, so the red shade-ranges are spread 



7 
 

Figure 9 

Figure 10 

vertically up and down the graph. But if the user wanted to specifically choose the lightest or darkest red pixels, they 

could choose the Y-Cb or Y-Cr graphs. 

Once the user chooses the 2D graph that they would like to use for threshold selection, the program will display a 

new window. This window displays three items: (left-to-right) the original image, the image shown in YCbCr with 

uniform/normalized brightness level, and the selected 2D graph. See Figure 8 (below): 

 

 

 

 

Figure 8 

 
Original Image  YCbCr view, uniform brightness             Distribution of pixels in color space 

 

In the 2D graph, the user will freehand-select (draw) around the pixels they want to threshold. This is done by left-

clicking in the graph, holding down the mouse button, and dragging the cursor around the desired dots. Figure 9 

shows what the freehand selection looks like, in-progress: 

 

 

The program reads the coordinate values of every selected pixel. In this 

example, the coordinates are Cb-Cr values (just like the x-axis and y-axis). 

The program then takes the maximum and minimum values from both axes - 

these four values become the thresholds. 

 

Solving the "Barrel Problem": Certain objects on the IGVC course pose a 

problem for the robot's vision system. The robot is designed to use its camera 

to look at chalked/painted white lane lines on the ground, using them as a 

visual reference to stay within the lane. There are many obstacles to avoid along the route, the most common of 

which is an orange construction barrel. Figure 10 shows a picture of several such barrels on the IGVC course - the 

lane line is visible in this figure too 

 



8 
 

Figure 11 

Figure 12 

 

When pixels in each frame of the streaming camera fit the thresholded criteria of a 

"lane line" - when our robot sees what it believes to be a white lane line - it assigns 

a trend line to those pixels. This is a simple concept, the same process occurs in 

the brain when one sees a less-than-perfectly painted line on a field. However, the 

robot's line-fitting ability cannot distinguish the difference between white paint in 

the grass and the white stripes on the barrels. If they both fit the color-criteria for a 

lane line (white), then the program marks those pixels as "lane line" pixels. Then, 

when it calculates the trend line for the "lane line", the result is completely incorrect. The robot thinks that the lane 

line is pointed/angled in a certain direction, when any person looking at the field knows otherwise. Fortunately, 

there is a way around this problem through the use of structuring elements. A structuring element is a shape created 

around a pixel. For this particular task, we use a rectangular-shaped structuring element. 

 

Orange pixels are dilated to overlap and conceal the white stripes 

 

The result of this method is that the program is free to threshold and track the 

"actual" lane lines [in the grass], using the trend line calculations, since it is no 

longer confused by the white regions on the barrels. Figure 12 shows this dilation 

executed on the image of the course (Fig 10): 

 

 

Calibration to ground 

plan with CalTech 

Toolbox: Using the 

CalTech Toolbox camera 

calibration software, we are 

able to determine the 

intrinsic and extrinsic 

parameters of the camera. This software allows the robot to know where the camera is, in reference to the ground. 

Since the camera is not stereoscopic, and without true depth perception, it calculates "depth" by assuming that all 

objects are flat on the ground. 

 

Gains on distance for steering: Center islands are navigated using a balancing of the repulsion of obstacles and 

lanes.  The Robo-Goat wants to maintain a minimum set distance from each according to different gains.  The 

avoidance distances for obstacles are set such that the Robo-Goat will only turn enough to barely avoid the obstacle.  

Lanes, however, have a higher gain and avoidance distance and the Robo-Goat will try to maintain that distance as 



9 
 

Figure 13 

well.  Then these two inputs are detected they force the Robo-Goat to take a path that balances the repulsive forces 

of the obstacle and lane.  This balanced path typically exists much closer to the obstacle. 

Obstacle Avoidance System 
Laser: The primary obstacle avoidance system is a laser scanner  -- the Hokuyo URG-04LX.  The laser is 

configured to scan every 2 degrees in a 240 degree arc.  The laser measures phase difference and time of flight to 

determine the range to an object.   

Our algorithm is patterned off of the Dynamic Window Obstacle Avoidance Method.   After accounting for the 

robot’s size and speed limitations, it finds the best “gap” or heading direction.   “Best” is defined along the 

following criteria (1) closest to desired heading (specified by camera or GPS); (2) closest to current heading; and (3) 

maximum clearance. 

The laser is capable of seeing up to 4 meters out; however, we set the maximum range that our navigation algorithm 

will recognize lower so we can navigate switchbacks.  A switchback can be seen as three layers of obstacles.  When 

the distance threshold of the laser is set properly, only one layer of obstacles can be seen at a time.  This allows the 

Robo-Goat to enter the first gap before trying to avoid the second layer of obstacles.  If the distance threshold is set 

too high, the Robo-Goat will see both the first and second layer at time, which will look like a solid wall, making the 

Robo-Goat perform a u-turn.   

 

The layering of the switchback obstacles is important because our algorithm that analyses the laser, camera, and 

ultrasonic data finds gaps in the obstacles.  Lane data from the camera and returns from the ultrasonic sensors are 

combined with the laser data to form a complete picture of the obstacles around the Robo-Goat.  After finding the 

gaps, it compares the width of the gaps to the parameter that defines the width of the Robo-Goat and determines if a 

gap is large enough.  The code then finds the gap that is closest to the desired heading, which was defined using 

either GPS waypoints or lane information from the camera. 

 

Enhanced Object Avoidance: For object avoidance last year, a laser range finder mounted at the base of the goat 

was used. However, a single laser range finder makes it difficult to detect objects such as sawhorses. The laser 

would only strike the upright supports and believe it could navigate between them. This year, we are using four 

ultra-sonic sensors in addition to the laser range finder. 

 

Ultra Sonic Sensors: There are four SRF08 ultra sonic sensors (Fig 13) newly 

mounted to the Robo-Goat.  Two face forward while two face outward.  The 

sensors use the I2C bus to communicate with the NavBoard, which was 

already mounted to the Robo-Goat.  The sensors beam is very similar to that of 

a cone, giving the sensors a wide viewing area. 

Each sensor is shipped with a default address, 0xE0.  Using a simple code, it is 

possible to readdress the sensors.  This will allow multiple sensors to use the 



10 
 

same I2C bus but fire at different times.  By placing only the sensor that needs a name change on the bus and using 

the simple code, , the address can be changed to one of sixteen different addresses.  Once the address is changed, 

every time the sensor is powered up, the LED will flash out the address.  The sensors will also maintain any new 

address.  It is important to ensure all sensors used have different addresses.  Failure to do so may result in a bus 

collision and very unpredictable results. 

 

The SRF08 sensors only use a 5V power source, making it easy to use the same power that is used to power the 

NavBoard.  The SDA and SCL are the data and clock lines respectively.  The resistors used for the system are 1KΩ.   

The beam of the SRF08 ultra sonic sensor is a cone like shape.  The sensors are sensitive up to a range of about 80 

inches.  From the sensor, the bean spreads 45° from center for about two feet.  Past that two feet mark, the cone 

stops spreading.    

 

The range for the SRF08 sensors is determined by the time between firing the ping and receiving it.  As the time 

increases, so does the max distance.  The current setting has the sensors pausing for 65 ms before reading the return.  

This allows the sensors to reach their top distance.  The range for the sensors is based on the range of the laser.  The 

computer will take the lesser of the two ranges, between the laser and the ultra sonic sensors, before considering a 

turn. 

 

The original code had all the sensors fire in sequence before reading any returns.  This would work for three or less 

sensors, but errors occurred when using all four sensors.  The maximum distance dramatically decreased to roughly 

15 inches.  This error was fixed by firing and reading one sensor at a time and can be found in the code.  This would 

eliminate the error of having one sensor read pings from the other sensors. 

 

Mounts: The side mounts for the ultra sonic sensors are simple L brackets and are recessed into the body of the 

Robo-Goat.  The brackets are tall and have an opening that runs the length of the bracket.  This allows future teams 

to adjust the height of the sensors.  Currently the sensors are mounted in such a way that they can detect the flags 

used for lane markings.  The mounts are recessed to save the sensors from hitting obstacles while turning.  The front 

two sensor mounts utilize the camera mast.  The two sensors are not as adjustable but there is room left to move 

them. 

 

 

GPS Navigation System 
GPS: The GPS receiver we use is a Garmin 18x-5Hz.  The receiver sensitivity is -185dBW and is accurate to within 

3m using WAAS differential GPS.  The receiver is attached to our laptop via a serial to USB adapter.  The GPS 

receiver is mounted atop our mast to have a clear view of the satellites and is powered by the 12V battery through a 



11 
 

Figure 14 

5V regulator.  The receiver sends a NMEA (National Marine Electronics Association) sentence every .2 seconds to 

the serial object in MATLAB. 

This year we started with new code to read the GPS receiver.  We discovered through experimentation that the when 

the serial object buffer in MATLAB overflowed the new data was thrown away, not the old data.  To deal with this, 

our code reads through the entire buffer until it has read every complete NMEA sentence.  Using headers, delimiters, 

and a checksum at the end of the sentence, the code verifies that a full and accurate sentence has been received 

before returning values from the sentence to the main code.  To reduce the time it takes to read through the buffer, 

we initialized the buffer to hold 1 second of measurements.  This corresponds to 5 sentences.  Since our navigation 

loop runs at approximately 3Hz, we will always call our function to read the NMEA sentences before the buffer 

overflows, thereby always receiving up to date data.  This method, however, requires a full run through the 

navigation loop in the beginning to remove all the old data in the buffer from the initialization of the GPS serial 

connection in MATLAB.   

The Robo-Goat uses GPS information to navigate by comparing GPS waypoints.  The MATLAB function that does 

this converts the GPS coordinates to radians and then uses two off the shelf equations to determine the distance 

between the points and the direction from the first point to the second.  This gives the Robo-Goat the desired 

heading and the distance to the waypoint so we can set a threshold that determines when we arrive at the waypoint.  

As soon as we get to a waypoint the Robo-Goat accesses the next entry in the matrix defining our waypoints and 

repeats the process. 

 

The Robo-Goat does not use any form of mapping.  In fact, the Robo-Goat has no memory.  In an attempt to achieve 

a 5Hz speed on our navigation loop and the reaction benefits that that brings, we decided to not map our 

environment.  This, however, is making it difficult to keep ourselves from performing a u-turn when we encounter 

an obstacle or from crossing a line that has disappeared beyond our field of view.  Our planned compromise is to 

implement a Kalman filter that will, to an extent, remember where the lines are that leave the field of view of the 

camera.   

 

Nav-Board: The Nav-Board used on the Robo-Goat (Fig 14) is designed by the technical staff in the department for 

use on numerous different projects.  The board is based on a Rabbit 3000 microprocessor and hosts a XBee module, 

3-axis accelerometer, 3-axis magnetometer, a GPS receiver, and numerous I/O ports (including analog, serial, and 

interrupts).  We use the Nav-Board’s magnetometers as a compass and the analog I/O to 

read data from our ultrasonic sensors.   Data is collected by MATLAB from the Nav-

Board via serial port.   

 

The compass on the Nav-Board is calibrated by recording the raw numbers from the 

magnetometers while spinning the Robo-Goat in a circle.  The result when the x and y 

axis are graphed simultaneously is a circle.  The values needed to zero the compass are 



12 
 

Figure 15 

the x and y coordinates of the center of the circle, taken by averaging all the x and y values separately.  These 

numbers are then written into the MATLAB code that reads the data from the serial object through which the laptop 

and the Nav-Board communicate.  These numbers are added to the raw data so that heading can be accurately 

determined.  If improperly calibrated, typical errors include all headings being in the same quadrant or headings 

appearing to skip a quadrant when the Robo-Goat is rotated. 

 

Drive System 

Speed/Performance: The Robo-Goat is hardware limited by its capabilities to 4.77 MPH.  We also discovered that 

in order to maintain our minimum speed we have to, on average, send at least 6V to our motors. 

Voltage (V) RPM MPH (10” wheel) 

5.93 37 1.1 

23.2 160.3 4.77 

 

Roboteq: The Robo-Goat is propelled by two 24V DC motors rated at 4.5A each.  We control the motors with the 

Roboteq motor control board via commands from the laptop through a serial connection.  We used the supplied 

RoboRun utility to measure the limits of our system by using a tachometer to measure our rotational velocity at 

varying voltage outputs.  Since the motors are powered using two 12V lead acid batteries in series, we have an 

available voltage range of 24V.  The RoboRun utility has a power setting that ranges from 0 to 127 and is 

proportional to the voltage range.  This was the range used to test the speeds of the motors.  The MATLAB function 

that sends commands to the Robo-Goat, however, has translational and rotational inputs that range from 0 to 1.   

These are combined to form individual commands for each motor that correspond to the desired voltages.  Forward 

and reverse changes are handled by changing which pin the Roboteq board uses to output a positive voltage to the 

motor with. 

 

Wheel Chair: The chassis for the Robo-Goat is a Sunfire Plus SP3C Power Mobility Chair. It weighs 82 lbs.  The 

chair has a range of up to 20 miles, making it well suited to the competition. The chair is powered by two 12V U1 

34 Ah batteries in series.  The ground clearance on the chair is only 2.5 inches, meaning we can navigate small pot 

holes, but not large ones. 

 

Safety Systems 
Safety Light: A new requirement for the IGVC this year is a safety light. The light must 

be solid when the vehicle is in ROV/manual mode and be flashing when it is in 

autonomous mode. The safety light we chose to use is a Federal Signal LP3TL-024R.  

We chose it for two reasons.  First, it has an LED bulb that has a low current draw, .08A.  

The second reason we chose the light was its 4X weather rating, which means it is able 



13 
 

to withstand dust, hose directed water, and corrosion.  With a 100,000 hour life on the LED bulb, this light should 

remain useful to the project for many years.   

 

Emergency Stop: The Robo-Goat is paired with a 6CH Futaba transmitter and receiver.  The Futaba transmitter 

manually controls the Robo-Goat, has an Emergency Stop, and has the ability to switch the input of the Roboteq 

motor control board.  A PIC12f675 is used to monitor CH5 which is the Emergency Stop channel.  If tripped, the 

PIC disengages a relay that cuts power to a solenoid, which in turn cuts power to the motors running the Robo-Goat.  

Another PIC12f675 monitors the other channels to manually control the Robo-Goat and to change the input to the 

Roboteq board.  The input for the Roboteq board can be set to the RS-232 input from the laptop running MATLAB 

or it can be set to receive input from the second PIC trough a MAX 323 which converts the signal from the 

transmitter to RS-232 levels.1  

Integration Testing 
We participated in the AUVSI demonstration on DC’s National Mall in April.   There the system performed well, 

traveling over 500ft autonomously in the two days we were there.   Specific testing points: 

1. GPS Navigation:   Based on 10 way points tested, the goat got within 2 meters of 9 of the 10.   The final 

way point was declared “reached” once the goat was within 3 meters of the actual point.   This can be 

difficult to test without surveying equipment.    

2. Speed:   The vehicle’s max speed is 5 mph.   However, at this time the autonomous navigation has only 

been tested at speeds up to 2 mph.   Initial experiments with our new laptop suggest an update rate of 10 hz 

(vs the current rate of 5 hz).    We believe this will permit running the course at max speed.  

3. Battery Life:   At the DC Demo neither the 12 or 14 V power systems were charges using AC power.   

Over 48 hours, we ran for about 4 hours using only the preexisting charge, and the energy contributed by 

the solar cells. 

4. Obstacle Avoidance:   Our obstacle avoidance algorithm is nearly flawless.   It is perhaps the strongest 

feature of robo goat.   At this time we intentionally use a detection distance of 1.5 meters, eventhough our 

hardware is capable of up to 4 meters. 

5. Lane following:   Over the course of 48 hours, we obsetrve the vision system work nearly 100% of the 

time.   More importantly we did not adjust the color thresholds despite the fact that the light conditions 

changed.   This is extremely promising.  Note however that the lines at the DC demo were made from lime 

chalk rather than paint, making them easier to see. 

                                                             
1 Information taken from Adam Albrecht’s report “Robo-Goat: Integrated Radio Control System” written 
09DEC10. 



14 
 

Figure 16 
Figure 17 

6. Ramp climbing: The IGVC states “…expect natural or 

artificial inclines with gradients not to exceed 15% and 

randomly placed obstacles along the course.” With this year’s 

addition of the solar panel, our team was concerned that the 

vehicle would becom top heavy, and unstable on inclined 

surfaces. We tested the Goat by placing it in it’s most procarious 

orientation atop a 15 degree inclined ramp. (Fig 16-17) The 

vehicle remained sufficiently stable despite bumps and jostling. 

7.  

 

Cost Estimate 
Cost:      

  Number hr/wk $/hr # of weeks Total # of Hours Total Cost 

Students: 5 12 26 16 192 $24,960.00 

Shop 1 - 25 - 25 $625.00 

Advisor 1 2 50 16 32 $1,600.00 

 

 

Direct Labor Cost: $  27,185.00 

Indirect Labor Cost: $  27,185.00 

Overhead:  $  27,185.00 

   

Total Cost:  $  89,367.00 

 

   

 

 

 

 

 

 

 

 

 

 

 

Parts 

Body Work: Chassis  $1,741  

  Weather Proofing  $80  

Total Body Parts:     $1,821  

Hokoyo Laser (1):  $2,500  

 

Roboteq Amp 

GPS:   

$700 

$199  

Accelerometer:   $10  

Compass:   $40  

Rabbit Board:   $99  

Ultrasound Range Finder (4):   $80  

Emergency Light:   $100  

Solar Panel (2):   $280  

Charge Controller:   $60 

Camera Lens (1):  $113  

Laptop and software:   $2,200  

Camera (1):     $670  

 Total Parts: $8,912  



15 
 

 

Work Breakdown: 

Amy Lowe 

Total Hours: 73 

 TSD provided 4 SRF08 Ultra Sonic Sensors 

 The sensors can with a skeleton code by Joe Bradshaw that was the base of my work 

 Wired the SRF08 Sensors 

 Wrote code to fire SRF08 Sensors 

 Wrote code to address each SRF08 Sensor 

 Tested different obstacles and angles of attack 

 Integrated SRF08 Sensors into master code 

 Helped with design concept with MIDN Parrott to mount SRF08 Sensors 

 Worked on integrating tilt detection for hills 

 

Dylan Parrott 

Total Hours: 72 

 Developed multiple GoogleSketchUp designs for Solar Mount. 

 Submitted work order for Solar Mount. 

 Drilled holes in vehicle for securing solar mount (assisted by machine shop) 

 Disassembled old laptop casing. (Lid was too large, would have hit solar panel) 

 Constructed new casing (received help from wood shop and TSD) 

 Submitted work order and schematic for ultra-sonic sensor mounts 

 Mounted sensors (TSD provide the plastic standoffs) 

 Mounted Solar Charge controller to roof (To accommodate for payload) 

 Constructed new GPS mount 

 Sanded and painted PVC camera hood (inside and out) 

 Mounted ultra-sonic sensor to camera hood 

 Currently working with 2/C Albrecht to wire the safety beacon 

 

Caleb Burrow 

Total Hours 95: 

• Laptop 

o I picked out the laptop, choosing the model and customizing the hardware 

o Made contact with HP Sales Agent to begin order process. Filled-out and forwarded USNA Order 

Forms through Systems Department 

o Installing all drivers and software on laptop 



16 
 

• Basic Thresholding: First six weeks, worked half-and-half with Nathan Miller on developing thresholding 

software 

o Six-plot figure 

o Free-hand selection interface 

o User's decision to choose Cb-Cr, Y-Cb, or Y-Cr 

• Camera: Worked half-and-half with Prof Esposito on setting up the new camera. This work was split 

evenly: 

o He picked out the camera 

o I figured out the firewire expresscard solution 

o Under his instruction, I took charge of determining camera settings. I wrote Weather Presets into 

the code. 

• Program and its parts: 

o  Software threshold decision tree (Main) 

o Dilation of Barrel Thresholds, through the use of structuring elements. 

o Wrote scripts to combine Ignored and Tracked Thresholds into a Final Threshold 

 My work; advice given by Professor Esposito 

 

Nicholas Mehalic 

Total Hours: 86  

 Procured, Tested and Integrated Solar Charge Controller and Panels 

 Drew wiring diagram for Robo-Goat Electronics 

 Fix poor wiring connections 

 Streamline GPS code (Significant help from Prof. Esposito) 

 Procure Safety Light 

 Build power supply for firewire card 

 Integrate GPS and Camera Navigation (work in progress)d 

 

Adam Albrecht 

Total Hours: 85 

• Developed wireless e-stop 

• Reconfigured roboteq board 

• Programmed PIC and RC control board 


	Robo Goat 2011/
	Overview
	New Design Decision Process
	The hi-lighted sections of this chart represent the major additions made to our vehicle this year:
	Power System
	Lane Following System
	Obstacle Avoidance System
	GPS Navigation System
	Integration Testing


